
February 1999 The Delphi Magazine 41

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

Back On The Chain Gang
Some thoughts on linked lists
and elementary structures

One of the most ubiquitous
data structures in the pro-

gramming canon is the linked list.
They crop up everywhere. Even
when programming with Delphi
and wielding its TList, the jack of
all trades container, there is still
room for a linked list. If you think
back to October’s Algorithms
Alfresco on how to store graphs in
memory, one of the implementa-
tions I used was an array of linked
lists (all right, I admit it was a TList
instead of an array, but if you think
about it, a TList is just a class rep-
resentation of an array of point-
ers). If you think back to January’s
column, the breadth-first traversal
of a graph used a queue, and the
queue I used was based on a linked
list.

So linked lists are still important
(we’ll see some more definite rea-
sons why in a minute). I dare say
that a large proportion of my read-
ers have coded up a linked list sev-
eral times in the past, and are now
wondering whether to continue
reading about something learned
at grandma’s knee. Bear with me a
while and we’ll see whether I can
teach you something new. If the
worst comes to the worst, at least
you’ll get some reusable code at
the end of it.

Day After Day
So what is a linked list? At its most
basic, it is a chain of items or
objects of some description, with
each item containing a pointer
pointing to the next item in the
chain (a singly linked list, Figure 1)
or with pointers to both the next
and previous items in the chain (a
doubly linked list, Figure 2). The
reason they are so important is
that adding or removing an item
from a linked list is a constant time
operation no matter how many
items there are in the list or where
the addition/deletion is taking
place. Compare this with an array

(or TList for that matter) where if
you insert an item at the top of the
array you must move all of the
items down by one place to make
room. Obviously this move takes
longer the more items there are.
Another great benefit of linked lists
is they can grow to an arbitrarily
large size, unlike an array, we don’t
have to allocate larger and larger
contiguous blocks of memory and
move the current data over every
time; with a linked list the list
grows incrementally in small steps,
not in larger and larger strides.

Let’s be a little more concrete
here, build a singly linked list and
see what we discover in the pro-
cess. Firstly we must define the
type of the item we shall be storing
in the linked list. As a first stab
people generally come up with the
TSimpleNode record definition in
Listing 1. The only field of note for
our purposes is the next pointer
Next; the remainder of the fields in
the type definition are just our own
variables we want to track in the
linked list, here represented by a
single field called Data. OK, pretty
easy so far. The linked list itself is a
variable of type PSimpleNode, ini-
tially set to nil to indicate an
empty list. You can think of the
linked list variable as being a
pointer to the first item in the list.
By the way, the items in the list are
generally known as nodes, and
that’s the way we shall refer to
them from now on.

How do we insert a new node?
For a singly linked list there’s a
single basic possibility: insertion
after a given node in the list (we do
have to make an exception to the
rule: adding a node before all the
others in the list). In simple lan-
guage we set the Nextpointer in our
new node to the node after the
given node and we set the Next
pointer of the given node to our
new node. Similarly for deletion:
the simplest possibility is deletion

➤ Figure 1: A singly linked list.

➤ Figure 2: A doubly linked list.

type
PSimpleNode = ^TSimpleNode;
TSimpleNode = packed record
Next : PSimpleNode;
Data : SomeType;

end;

➤ Listing 1:
A singly linked list item.

after a node in the list (although we
do have to make a special case for
deleting the first node in the list).
Here we set the given node’s Next
pointer to the node after the one
we are about to delete: at that
point the node to be deleted is
unlinked from the list and we can
dispose of it. Listing 2 has the
details and Figures 3 and 4 show
the steps involved in the general
case in both these routines. Notice
that both routines have the list
parameter as a var parameter: it is
entirely possible that the pointer
to the linked list will be changed by
both routines. Of course we could
code all this inside a class and
therefore hide this possibility
inside the implementation. We
won’t do so just yet, though.

Traversing the list is pretty
simple as well. We essentially walk

42 The Delphi Magazine Issue 42

the list, going from node to node
following the Next pointers, until
we reach the nilnode that signifies
the end of the list. Listing 3 shows
the simple loop required where the
Process procedure is defined else-
where and presumably will do
something with the Data field of the
node it is passed. Emptying a
linked list uses a slight variation of
this technique in order to make
sure we don’t refer to the Next field
of the node after it is disposed.

Now we’ve seen traversals, let’s
ask the question which may have
popped into your mind a couple of
paragraphs back. What if we want
to add a node before another? How
do we do it? The only way with a
singly linked list is to traverse the
list, looking for the node before
which we want to add our new
node. In the process of traversing
the list we maintain a variable that
points to the previous node (the
parent, if you will). Once we find
the node we were looking for we’ll

procedure InsertAfter(var aList : PSimpleNode; aNode : PSimpleNode;
const aData : SomeType);

var NewNode := PSimpleNode;
begin
{create new node, save data}
New(NewNode);
NewNode^.Data := aData;
if aNode = nil then begin
{insert at front}
NewNode^.Next := aList;
aList := NewNode;

end else begin
{insert after given node}
NewNode^.Next := aNode^.Next;
aNode^.Next := NewNode;

end;
end;
procedure DeleteAfter(var aList : PSimpleNode; aNode : PSimpleNode);
var NewNode := PSimpleNode;
begin
New(NewNode);
NewNode^.Data := aData;
if aNode = nil then begin
{delete the first node}
if aList <> nil then begin
OldNode := aList;
aList := OldNode^.Next;
Dispose(OldNode);

end;
end else begin
{delete after given node}
OldNode := aNode^.Next;
if OldNode <> nil then begin
aNode^.Next := OldNode^.Next;
Dispose(OldNode);

end;
end;

end;

➤ Listing 2: Insertion and deletion in a singly linked list.
➤ Figure 3: Adding a node

to a singly linked list.

➤ Figure 4: Deleting a node from
a singly linked list.

procedure TraverseList(aList : PSimpleNode);
begin
while aList <> nil do begin
Process(aList);
aList := aList^.Next;

end;
end;

➤ Listing 3: Traversing a linked list.

have the pointer to the previous
node and we can just use the
InsertAfter routine on this parent
node. Listing 4 shows this tech-
nique with the InsertBefore rou-
tine. Notice the special code to
cater for the case where you’re
adding a node before the first node
(the parent is nil in this case). This
routine isn’t as fast as the
InsertAfter routine I discussed
above because it requires the
linked list to be walked beforehand
to find the parent of the given node.
In general, if there is a possibility of
inserting before a node, we’d use a
doubly linked list instead.

Brass In Pocket
I’m quite sure that none of this so
far is a surprise to you. However,
look again at the code for the inser-
tions and the deletion. Doesn’t it
strike you as somehow, you know,
messy? It does to me. We have to
have these special cases in both

routines in order to cope with pro-
cessing the first node in the list. We
have to make sure that the linked
list parameter is a var parameter in
case it gets changed. Isn’t there a
better way? The answer is yes, by
using dummy nodes.

In the case of a singly linked list
we would use a single dummy node
at the head of the linked list. The
first node in the list that stores
data will be the one pointed to by
the head node’s Next field. The end
of the linked list is determined by a
nil Next value, as before. We have
to have a routine to initialize the
list this time (before all we did was
set the list variable to nil, now we
have to allocate a dummy node to
act as the head node) and one to
destroy the list (we have to
deallocate the head dummy node).
If this isn’t ringing alarm bells
about writing a class to encapsu-
late all this then there’s no hope
I’m afraid!

February 1999 The Delphi Magazine 43

Before we actually write such a
class there’s one more thing to
consider. We started off by declar-
ing a node record type to hold
firstly the data we were interested
in and secondly a pointer to the
next node in the linked list. The
second item is invariant, but the
first depends on our particular
application, or on the particular
use we have at the moment. We
could have one field, two or more.
It seems hard to write a generic,
reusable linked list class when we
don’t know ahead of time what we
are going to store in it.

There are two solutions to this
conundrum. The first one is to
declare an ancestor node class
that just consists of the Next
pointer. Your data is then defined
as a descendant of this class. In this
case, you are responsible for allo-
cating and deallocating the nodes,
all the linked list wants are
preallocated nodes whose Next
pointers it can manipulate. It must
be said that this is a slightly inele-
gant method since you are forced
to declare descendants of the
ancestor node class to store your
data (what if the items you wanted
to put in the linked list were
instances of a class that you had no
control over?).

The second solution, and I think
the much better one, is to abstract
out the data into the form of a
typeless pointer. When we add an
item to the linked list, we just pres-
ent the linked list class with a

pointer value (say a pointer to our
data, or an object of ours on the
heap) and let the linked list do the
rest: allocating a node, setting the
data, maintaining the links. This is
the approach taken by my
freeware EZDSL class library [get
it at ftp://ftp.turbopower.com/pub/
misc/funcs/ezdsl301.exe Ed]. This
is a clean way around the problem
since the user of the class doesn’t
have to know anything about the
Next pointers, or reserve space for
them, or create a special descen-
dant of an ancestor class, etc.

Space Invader
This second solution has a corol-
lary that is even more compelling.
The nodes used by the class in this
case are always eight bytes in size:
a Next pointer and a Data pointer,
both four bytes. So what? Well,
when the linked list wants to store
some data, it has to allocate the
node first. To do this it would have
to use the highly complex Delphi
heap manager to allocate eight
bytes. The heap manager has all
sorts of fabulous code to manage
chunks of memory and to allocate
and free arbitrarily sized blocks for
our use, and it manages all this
complexity and functionality in an
amazingly efficient manner. But we
know that we only want eight byte
blocks and we will always be deal-
ing with eight byte blocks. Can we
use this regularity to speed up the
allocation and deallocation of our
fixed sized nodes? The answer is,

of course, yes: we allocate a batch
of nodes from the Delphi heap
manager inside the linked list
object and dole them out as
required. Of course we don’t allo-
cate a batch of nodes singly, we
allocate instead 1,024 bytes, say,
and view this large block as 128
separate nodes. If we require more
than 128 nodes, then we allocate
another 1,024 byte block to give us
a further 128 nodes.

But here comes the interesting
part. The large blocks we allocate
we store in an internal linked list,
and the nodes we split from them
go into a free list, which is also a
linked list. So, our linked list class
will rely on linked lists itself to
work more efficiently. Cute, eh?

What do I mean by a free list?
This is a common construction in
programming. What happens is
that we have a set of items that we
‘allocate’ and ‘free’ and when freed
will in all likelihood be reused at
some stage. Delphi’s heap man-
ager uses a free list of deallocated
memory blocks of differing sizes.
Many database engines will have a
free list of deleted records that can
be reused. When we want to allo-
cate an item we go to our free list
and reuse one of the items on it. If
all the items are the same, then the
free list becomes a stack (at least
on the surface, underneath it’s still
a linked list): to free an item we
push it onto the free list, to allocate
an item we pop the first one off the
free list.

In our node allocation manager,
there is a free list of nodes, initially
set to nil. When we want to allo-
cate a node the manager looks to
the free list. If there are no nodes
present (the free list is nil), the
manager allocates a large chunk of
memory from Delphi’s heap man-
ager, usually called a page. It then
splits up this page into node sized
pieces and pushes them all onto
the free list. After this process, it
can pop a node off the free list and
return it to the consumer. When a
node is freed, the node allocation
manager just pushes it onto the
free list. By ‘push’ I mean insert a
node at the top of the list, and by
‘pop’ I mean delete the node at the
top of the list.

procedure InsertBefore(var aList : PSimpleNode; aNode : PSimpleNode;
const aData : SomeType);

var
NewNode : PSimpleNode;
WalkNode : PSimpleNode;
Parent : PSimpleNode;

begin
{create new node, save data}
New(NewNode);
NewNode^.siData := aData;
{find the given node}
Parent := nil;
WalkNode := aList;
while (WalkNode <> nil) and (WalkNode <> aNode) do begin
Parent := WalkNode;
WalkNode := WalkNode^.Next;

end;
{if Parent is nil, insert before the first node}
if Parent = nil then begin
NewNode^.Next := aList;
aList := NewNode;

end else begin
{otherwise insert after Parent}
NewNode^.Next := Parent^.Next;
Parent^.Next := NewNode;

end;
end;

➤ Listing 4: Insertion in a linked list before another.

44 The Delphi Magazine Issue 42

Listing 5 shows the code in the
node allocation manager. The only
‘scary’ stuff in this code, and it’s
not that scary, is the partitioning of
the page into the smaller node
sized pieces, but if you look
closely, all it does is to add each
node in the page to the free list by
passing its address to the free node
routine.

By the way, just to show that it’s
worth going to all the trouble of
this node allocation manager, my
tests have shown that it is at least
twice as fast as the Delphi 4 heap
manager over a full cycle of alloca-
tions and deallocations of millions
of nodes.

Talk Of The Town
At this point we can start to write a
generic singly linked list class. We
know how to create an efficient
node allocation manager, we can
insert nodes into the list, delete
nodes from the list and so on. We
know we need to create a dummy
node at the head in order to make
the insertion and deletion code
more efficient. Furthermore we can
abstract out the data from the
mechanics of the linked list itself.
Are we really there yet? Not quite.
If you look back at the original
insertion and deletion code, we
were calling the routines with ref-
erence to a particular node. This is
a little difficult when we are trying
to remove the need for the user of
the linked list to know about
nodes.

What we shall do instead is to
introduce the concept of a cursor.
A cursor is a gadget that points
somewhere inside the linked list.
We can set the cursor at the start of
the linked list, before all of the

nodes, and we can move this
cursor forwards through the list.
We can also examine the data at
the cursor. Because of the way the
singly linked list works we cannot
move backwards (there are no
backward links, remember: this
will have to wait for the doubly
linked list). We should be able to
test to see if the cursor is before all
nodes or after all the nodes (akin to
beginning of file or end of file when
we are talking about databases).

Now, having mocked up a quick
design, we can write the singly
linked list class. Rather than print
all the code in the magazine and
bulk out the article, please have a
look at this month’s disk for all the
gory details.

Mystery Achievement
One of the questions that periodi-
cally comes up is how to sort a
linked list. You may not believe it
but it is possible to sort a singly
linked list. I’ll admit that when I
first considered this I was of the
opinion that there wasn’t enough
information in a singly linked list to
do so: I thought that backward
links were required. Of course I
was wrong (not the first time!), we
just need several pointers or
cursors into the list.

What we’ll do to sort a linked list
is to perform an insertion sort
(refer back to September 1998’s
Algorithms Alfresco for details). We
use two cursors into the linked list:
one cursor will move through the
entire list, node by node, and the
node it is pointing to will be the
node we are trying to insert into
the proper sequence. The other

type
PsnmPage = ^TsnmPage;
TsnmPage = packed record
snmpNext : PsnmPage;
snmpNodes : array [0..pred(PageNodeCount)] of TsllNode;

end;
var
snmFreeList : PsllNode;
snmPageList : PsnmPage;

procedure snmFreeNode(aNode : PsllNode);
begin
{add the node to the top of the free list}
aNode^.sllnNext := snmFreeList;
snmFreeList := aNode;

end;
procedure snmAllocPage;
var
NewPage : PsnmPage;
i : integer;

begin
{get a new page}
New(NewPage);
{add it to the current list of pages}
NewPage^.snmpNext := snmPageList;
snmPageList := NewPage;
{add all the nodes on the page to the free list}
for i := 0 to pred(PageNodeCount) do
snmFreeNode(@NewPage^.snmpNodes[i]);

end;
function snmAllocNode : PsllNode;
begin
{if the free list is empty, allocate a new page of nodes}
if (snmFreeList = nil) then
snmAllocPage;

{return the first node on the free list}
Result := snmFreeList;
snmFreeList := Result^.sllnNext;

end;

cursor will be used to walk through
the currently sorted nodes, trying
to find the correct spot for the
node we’re trying to insert. Think
back to the card metaphor we were
using in September. Deal yourself a
hand of cards. Starting from the left
take out the next card and try and
place it in order in the set of cards
prior to it that are already sorted.
Unlike before, to find the correct
spot, we’ll always start at the
beginning of the list and work our
way forward until we get to a node
that’s ‘greater’ than the one we are
trying to insert (or, indeed, until we
reach the node itself, at which
point we shall assume that it is in
the correct place). Because the
data in our nodes is an untyped
pointer, we shall have to use the
usual trick of supplying a function
to compare two data items in order
to perform the sort. The function
returns an integer less than 0 if the
first data item is less than the
second, 0 if they are equal, or an
integer greater than 0 if the first is
greater than the second. Listing 6
has the details.

Once we have a linked list in
sorted order, it would be nice to
keep it so as we insert new items.
The usual algorithm is simple.
Essentially it’s a sequential search
for the correct position from the
start of the linked list, comparing
each node we encounter against
the one we are trying to insert until
we find the correct place to insert
it, basically what we’d been doing
in the middle of the insertion sort.
If, however, the cost of comparing
two nodes is large compared with
moving from node to node (for

➤ Listing 5: The singly linked node allocation manager.

February 1999 The Delphi Magazine 45

example, comparing two strings
takes far longer than moving from
one node to another), then we can
try a different tack: a binary search.

Those of you who’ve used binary
search before are now probably
wondering how on earth we can
perform a binary search on a linked
list. Well, settle back and find out. A
binary search usually works like
this. Assume we have a set of items
in sorted order and we can access
each of them efficiently by a
random access method (for exam-
ple we have an array of strings in
alphabetic order). Now the object
of the exercise is to find an item
we’re given in the set. Get the item
at the midpoint of the set and com-
pare it with our given item. If it’s
equal we’re done. If the midpoint
item is less than ours, we perform
the exact same steps on the latter
half of the set, since that’s obvi-
ously where the item will be found.
If, however, the midpoint is greater
than our item, then we perform the
same steps on the first half of the
set. Every time we make a compari-
son, we essentially find the item or
we halve the set.

So how do we do this for a linked
list? Well, we must make a small
assumption first: we know the
number of items in the set. Not too
large an imposition, I’m sure you’ll
agree, and in fact the linked list
class on the diskette maintains the
count of items through insertions
and deletions. Using this we can
now describe binary search on a
linked list.

1. Store the dummy head node in
a variable BeforeList.

2. Calculate the number of items
in the list, store in variable
ListCount.

3. If ListCount is zero, insert item
after BeforeList.

4. Calculate half of ListCount,
rounded up if need be, store in Mid-
Point.

5. Move from BeforeList through
the list, counting MidPoint nodes.

6. Compare this node (the Mid-
Pointth node) against the item we
have.

7. If equal, insert the item after
this node.

8. If the node is less than our
item, store this node in BeforeList,
subtract MidPoint from ListCount,
go back to step 3.

9. If the node is greater than our
item, store MidPoint-1 into
ListCount, go back to step 3.

As you can see we are logically
subdividing the linked list up into
smaller and smaller sublists,
reducing the number by half each
time. Suppose in our search we use
the maximum number of subdivi-
sions: the worst case scenario. If
there are n nodes in the list, we will
follow approximately n links (ie,
n/2 + n/4 + n/8 +..., which in the lim-
iting case is equal to n) and make
approximately log n comparisons.
Compare that with the sequential
search method where in the worst
case we’ll follow n links and make n
comparisons; but on average, we’ll
follow n/2 links and make n/2 com-
parisons. So, if the average time to
make a comparison is much larger
than the time to follow a link then
we’ll do much better to perform a
binary search. Because of the way

we have structured our linked list
class, all comparisons are per-
formed through at least one func-
tion call; hence, we’ll find that a
binary search is almost always
better. I leave the implementation
of the above algorithm as an
exercise for the reader.

Precious
As we’ve already alluded to above,
one great use for a singly linked list
is for a stack. A stack is a container
to which we add items and from
which we can remove them in
reverse order (a last in, first out, or
LIFO container). The operations
are usually called push for the add
operation and pop for the remove
operation. The stack is just a singly
linked list where we only add
nodes before the first node and
remove the first node. Listing 7
shows the basic stack class.

We can now easily set up a
queue class as well. A queue is a
container to which we can add
items and from which we can
remove them in the order in which
they were originally added (basi-
cally the oldest item first). This is
known as a first in, first out (FIFO)
queue. Unlike a stack, the queue’s
two main operations don’t seem to
have standard names. We’ll use
enqueue for adding an item to the
end of the queue and dequeue for
removing the oldest from the head
of the queue (some books just use
put and get, for example). Since
we’re adding items to the end of
the queue, we make use of a
pointer pointing there; this is usu-
ally known as the tail pointer.
Unlike the head pointer which is a
separate node altogether that

procedure TaaSingleList.Sort(aCompare : TaaCompareFunction);
var
Walker : PsllNode;
Temp : PsllNode;
WalkerParent : PsllNode;
TempParent : PsllNode;

begin
{if there are zero (or one) items list is already sorted}
if (Count <= 1) then
Exit;

{perform an insertion sort from the second item onwards}
WalkerParent := FHead^.sllnNext;
Walker := WalkerParent^.sllnNext;
while (Walker <> nil) do begin
{find where walker item should be in sorted list to its
left: walk the sorted sublist making a note of parent
as we go so we can insert properly. Note the loop below
will terminate in the worst case by the walker node
itself: we won't run off the end of the list}
TempParent := FHead;
Temp := TempParent^.sllnNext;
while (aCompare(Temp^.sllnData, Walker^.sllnData) < 0)

do begin
TempParent := Temp;
Temp := TempParent^.sllnNext;

end;
{did we find the walker node? If so, it's in the right
place so move the walker's parent on by one link}

if (Temp = Walker) then
WalkerParent := Walker

{otherwise, move the walker node into the correct
place in the sorted sublist; leave the walker's parent
where it is}
else begin
{disconnect the walker node}
WalkerParent^.sllnNext := Walker^.sllnNext;
{connect the walker node in the correct place}
Walker^.sllnNext := Temp;
TempParent^.sllnNext := Walker;

end;
{set the walker node}
Walker := WalkerParent^.sllnNext;

end;
end;

➤ Listing 6: Insertion sorting a linked list.

46 The Delphi Magazine Issue 42

holds the linked list together, the
tail pointer just points to the final
node in the linked list, akin to a
cursor into the list. The disk
contains such a queue class, and
Listing 8 just shows the enqueue
and dequeue methods.

Having touted all the great bene-
fits of a linked list there is one oper-
ation for which it is not well
designed. That operation is the
retrieve the nth item operation; for
instance, get the 100th item. For an
array, this particular operation is
very fast (it usually just reduces to
a simple address calculation; the
address of the 100th item is the
start address of the array plus 99
times the size of each item), but for
a linked list the only way to do it is
to walk the list, counting the nodes
(in other words, start at the first
node and follow the next pointers
99 times). We did this in the binary
search routine, if you recall. It is up
to us to recognize these essential
differences between arrays and
linked lists and use the appropriate
one for the particular part of our
application.

Thin Line Between...
Having spent some time discussing
singly linked lists, we now move
onto doubly linked lists. Here, in
addition to the link to the next
node in the list, each node has a
link, or pointer, to the previous
node in the list. Whereas in the
singly linked list inserting a node
required a single link to be broken
and two links to be set (the one

from the previous node to the new
one and the one from the new one
to the next), with a doubly linked
list, two links will be broken and
four will be set. The four are: from
the previous node to the new one
and vice versa, and from the new
node to the next one and vice versa.

Just like in the singly linked list,
it makes sense to have a dummy
head node, but this time it also
makes sense to have a dummy tail
node at the end of the linked list.
The main reason is that with a
doubly linked list we can efficiently
implement an InsertBefore type
operation, and if we had a dummy
tail node, we’d get rid of a special
case again (the ‘I want to insert this
new node at the end of the list’
case).

To create a doubly linked list
class, we’d go through the same
steps as for the singly linked list
case. Our nodes this time will be 12

bytes in size: a Next pointer, a Prev
pointer (for the link to the previ-
ous node) and a Data pointer, each
four bytes. Hence our node alloca-
tion manager will have to manage
12-byte nodes instead of our origi-
nal 8-byte nodes for the singly
linked list case, and it still makes
sense, for all the same reasons as
before, to have such a manager.

Note also that this time our
internal cursor can be placed at
the end of the list, after all the
nodes, and we can also move the
cursor backwards through the list.
Again, I’ll leave the code for the
doubly linked list class to the dis-
kette.

Sorting a doubly linked list
seems more complicated: after all,
we’ve just seen how easy it is for
the singly linked list case and now
we have to worry about all of these
pesky pointers to the previous
nodes. Actually in practice we

constructor TaaStack.Create;
begin
inherited Create;
{allocate a head node}
FHead := snmAllocNode;
FHead^.sllnNext := nil;
FHead^.sllnData := nil;

end;
destructor TaaStack.Destroy;
begin
Clear;
snmFreeNode(FHead);
inherited Destroy;

end;
procedure TaaStack.Clear;
var Temp : PsllNode;
begin
Temp := FHead^.sllnNext;
while (Temp <> nil) do begin
FHead^.sllnNext := Temp^.sllnNext;
snmFreeNode(Temp);
Temp := FHead^.sllnNext;

end;

FCount := 0;
end;
function TaaStack.Pop : pointer;
var Temp : PsllNode;
begin
if (Count = 0) then
raise Exception.Create('TaaStack.Pop: stack is empty');

Temp := FHead^.sllnNext;
Result := Temp^.sllnData;
FHead^.sllnNext := Temp^.sllnNext;
snmFreeNode(Temp);
dec(FCount);

end;
procedure TaaStack.Push(aItem : pointer);
var Temp : PsllNode;
begin
Temp := snmAllocNode;
Temp^.sllnData := aItem;
Temp^.sllnNext := FHead^.sllnNext;
FHead^.sllnNext := Temp;
inc(FCount);

end;

➤ Listing 7: A stack class
using a linked list. function TaaQueue.Dequeue : pointer;

var Temp : PsllNode;
begin
if (Count = 0) then
raise Exception.Create('TaaQueue.Dequeue: queue is empty');

Temp := FHead^.sllnNext;
Result := Temp^.sllnData;
FHead^.sllnNext := Temp^.sllnNext;
snmFreeNode(Temp);
dec(FCount);
{if we've managed to empty the queue, the tail pointer is now
invalid, so reset it to point to the head node}
if (Count = 0) then
FTail := FHead;

end;
procedure TaaQueue.Enqueue(aItem : pointer);
var Temp : PsllNode;
begin
Temp := snmAllocNode;
Temp^.sllnData := aItem;
Temp^.sllnNext := nil;
{add the new node to the tail of the list and make sure the tail
pointer points to the newly added node}
FTail^.sllnNext := Temp;
FTail := Temp;
inc(FCount);

end;

➤ Listing 8: Enqueue and dequeue using a linked list.

48 The Delphi Magazine Issue 42

cheat a little and just use the singly
linked list sort algorithm without
worrying at all about the previous
pointers. That operation gets the
linked list sorted in a singly linked
fashion. At that point we clean up
and make one pass through the
entire linked list and patch up all
the previous links. Listing 9 shows
the algorithm; it’s very simple and
just requires us to walk through
the list maintaining a Parent
pointer and patching the current
node’s Prev link to point to it.

Show Me
We’ve now seen a singly linked list
and a doubly linked list. Are there
any other types of linked list? One
of the more common ones is a cir-
cular linked list. This is a linked list
where the last node’s next link
points to the first node. In effect
the list forms a closed loop and
there is no ‘first’ node or ‘last’
node. No matter where you are, if
there are n nodes in the list, you
can follow the next links n times
and arrive back at where you were.
There are two types of circular
linked list: the first has nodes with
next pointers only (a circular
singly linked list) and the second
has nodes with both forward and
backward pointers (a circular
doubly linked list). I won’t provide
any code for a circular linked list as
I’m sure you will be able to write
one fairly quickly using the code
for the singly or doubly linked list.

Another type of linked list is the
multilist. With a singly linked list
we have one next link per node.
With a multilist we have two or
more next links per node. Why? To
maintain several different order-
ings of the items. Suppose the
items were customer records: we
could create a multilist where the
first set of links maintained the
records in name order and the
second set of links maintained the
records in Social Security number

order. Again a multilist can come in
a couple of different flavors: singly
linked and doubly linked. In fact, if
you think about it, the doubly
linked list is itself a multilist. In
practical applications, it’s not
really necessary to write a proper
multilist (ie, with a node that has
the required number of forward
links and backward links), we can
get the same effect by using two or
more simple linked lists encapsu-
lated inside a class. In general, it
would be better to use other data
structures to maintain the ordered
sequences since insertion or dele-
tion from a binary search tree (for
an example) would be faster than
insertion or deletion from a sorted
linked list.

There is one particular optimiza-
tion we can do with an unsorted
linked list to improve access times
to individual items. Imagine that
we have a linked list. The applica-
tion we are writing requires a find
operation on the linked list to find a
particular item (presumably we’ve
written a routine which will get
called for each item in the list, and
it will return true if the item is the
one we want). A simple sequential
search, in other words. An example
is a linked list of currencies for
example, dollars, pounds, francs,
whatever, and we need to find the
marks item. Suppose, furthermore,
that your application (or the
people using it) tends to find two or
three currencies more often than
others. It would make sense to
reorganize the linked list so that
these currencies were at the front:
the sequential search would com-
plete faster in that case.

With a linked list, this kind of
optimization is extremely easy to
do. When we find the item we are
looking for, we delete the item from
its current position and reinsert it
at the front of the list (of course, if it
is already there, we do nothing).
Note that we don’t have to

deallocate and reallocate the
node: we can reuse the one the
item is attached to quite easily.
Because insertion and deletion in a
linked list is a constant time opera-
tion we won’t, in practice, notice
these rearrangements. We will
however notice the fact that the
find operation completes much
more quickly.

This latter optimization is tradi-
tionally used in hash tables, at
least the type where collisions are
resolved by adding the colliding
items to a linked list at each bucket
(see my column on hash tables
from the March 1998 issue of The
Delphi Magazine, where I mention
this algorithm). Since the items in a
hash table are not sorted per se,
this optimization trick with linked
lists makes perfect sense since a
sequential search has to be made
along a bucket’s linked list to find a
particular item.

Don’t Get Me Wrong
That’s about it for now for linked
lists. We’ve looked at singly and
doubly linked lists, inserting and
deleting items in them. We dis-
cussed how to abstract out the
requirements for a linked list so
that we could write a generic
linked list class that would work
for any type of item we wanted to
use. We reviewed how to sort a
linked list and how to perform a
binary search on a linked list
(something usually reserved for
arrays or array-like containers).
We showed how to use linked lists
to implement a stack and a queue,
two other useful containers. Next
time we’ll look at another type of
linked list, the skip list.

Julian Bucknall’s left arm nearly
became unlinked from his shoul-
der over Christmas, and some of
this article and code was written
one-handed. He thanks his wife,
Donna, for looking after him
whilst his arm was strapped up.
You can email him at julianb@
turbopower.com. The code that
accompanies this article is
freeware and can be used as-is in
your own applications.
© Julian M Bucknall, 1999

WalkerParent := FHead;
Walker := WalkerParent^.dllnNext;
while (WalkerParent <> FTail) do begin
Walker^.dllnPrev := WalkerParent;
WalkerParent := Walker;
Walker := WalkerParent^.dllnNext;

end;

➤ Listing 9: Patching up the links after sorting a doubly linked list.

	Day After Day
	Brass In Pocket
	Space Invader
	Talk Of The Town
	Mystery Achievement
	Precious
	Thin Line Between...
	Show Me
	Don’t Get Me Wrong

